SILCA-Newton-Krylov: Robust and Efficient Time-Domain VLSI Circuit Simulation by Krylov-Subspace Iterative Methods with Quasi-Newton Preconditioners

نویسندگان

  • Zhao Li
  • Richard Shi
چکیده

In this paper, we present SILCA-Newton-Krylov, a new method for accurate, efficient and robust timedomain VLSI circuit simulation. Similar to SPICE, SILCA-Newton-Krylov uses time-difference and Newton-Raphson for solving nonlinear differential equations from circuit simulation. But different from SPICE, SILCA-Newton-Krylov explores a preconditioned flexible generalized minimal residual (FGMRES) method, instead of traditional LU factorization, to solve the system of linear equations in the inner iteration loop. Our key contribution is to introduce an effective and robust quasi-Newton preconditioning scheme to ensure both the robustness and efficiency of iterative methods. Quasi-Newton methods have been explored previously to reduce the number of LU factorization for circuit simulation, however, their converge rate and stability often deteriorate. In this paper, quasi-Newton methods are applied to construct the preconditioners instead of directly to construct and solve circuit equations. Specifically, a systematic method for adaptive time-step size control and a systematic method to generate piecewise weakly nonlinear (PWNL) definition of nonlinear devices are proposed to construct quasi-Newton preconditioners so that the total number of LU factorization for preconditioning is minimized during the entire time-domain simulation. With the PWNL definition, the preconditioner is kept constant if all nonlinear devices reside in their present operating PWNL regions. When nonlinear devices switch their operating PWNL regions, the low-rank update technique is applied to update the preconditioner efficiently rather than to perform new LU factorization. To reduce further the preconditioning cost, we test incomplete LU preconditioners derived from the factorized full L and U matrices, as well as incomplete LU preconditioners followed by an FGMRES preconditioner. All these techniques combined lead to a new time-domain circuit simulation method, named SILCA-Newton-Krylov, which has been implemented into SPICE3. Experimental results on a collection of analog and digital circuits have shown that SILCA-Newton-Krylov is as robust and accurate as SPICE. SILCA-Newton-Krylov is especially attractive for simulating circuits with a massive amount of parasitic RLC elements for post-layout verification. For example, for a nonlinear circuit with power/ground networks with tens of thousand elements, SILCA-Newton-Krylov is shown to yield the SPICE-like accuracy and over 20X overall CPU time speedup over SPICE3, and furthermore the speedup increases with the size of a circuit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Communication A Parallel Newton–Krylov Method for Navier–Stokes Rotorcraft Codes

The application of Krylov subspace iterative methods to unsteady three-dimensional Navier–Stokes codes on massively parallel and distributed computing environments is investigated. Previously, the Euler mode of the Navier–Stokes flow solver Transonic Unsteady Rotor Navier–Stokes (TURNS) has been coupled with a Newton–Krylov scheme which uses two Conjugate-Gradient-like (CG) iterative methods. F...

متن کامل

Preconditioners for Linearized Discrete Compressible Euler Equations

We consider a Newton-Krylov approach for discretized compressible Euler equations. A good preconditioner in the Krylov subspace method is essential for obtaining an efficient solver in such an approach. In this paper we compare point-block-Gauss-Seidel, point-block-ILU and point-block-SPAI preconditioners. It turns out that the SPAI method is not satisfactory for our problem class. The point-bl...

متن کامل

Preconditioned Krylov Subspace Methods in Nonlinear Optimization

One of the possible ways of solving general problems of constrained nonlinear optimization is to convert them into a sequence of unconstrained problems. Then the need arises to solve an unconstrained optimization problem reliably and efficiently. For this aim, Newton methods are usually applied, often in combination with sparse Cholesky decomposition. In practice, however, this approach may not...

متن کامل

A parallel Newton-Krylov flow solver for the Euler equations on multi-block grids

We present a parallel Newton-Krylov algorithm for solving the three-dimensional Euler equations on multi-block structured meshes. The Euler equations are discretized on each block independently using second-order accurate summation-by-parts operators and scalar numerical dissipation. Boundary conditions are imposed and block interfaces are coupled using simultaneous approximation terms (SATs). ...

متن کامل

Nonsymmetric Preconditioner Updates in Newton-Krylov Methods for Nonlinear Systems

Newton-Krylov methods, combination of Newton-like methods and Krylov subspace methods for solving the Newton equations, often need adequate preconditioning in order to be successful. Approximations of the Jacobian matrices are required to form preconditioners and this step is very often the dominant cost of Newton-Krylov methods. Therefore, working with preconditioners destroys in principle the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005